Visual Saliency Prediction Using a Mixture of Deep Neural Networks
نویسندگان
چکیده
Visual saliency models have recently begun to incorporate deep learning to achieve predictive capacity much greater than previous unsupervised methods. However, most existing models predict saliency using local mechanisms limited to the receptive field of the network. We propose a model that incorporates global scene semantic information in addition to local information gathered by a convolutional neural network. Our model is formulated as a mixture of experts. Each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks’ output, with weights determined by a separate gating network. This gating network is guided by global scene information to predict weights. The expert networks and the gating network are trained simultaneously in an end-to-end manner. We show that our mixture formulation leads to improvement in performance over an otherwise identical non-mixture model that does not incorporate global scene information.
منابع مشابه
Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملSalGAN: Visual Saliency Prediction with Generative Adversarial Networks
We introduce SalGAN, a deep convolutional neural network for visual saliency prediction trained with adversarial examples. The first stage of the network consists of a generator model whose weights are learned by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency maps. The resulting prediction is processed by a discriminator network traine...
متن کاملBeyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
Despite the tremendous achievements of deep convolutional neural networks (CNNs) in most of computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step visualization method that aims to shed light on how deep CNNs recognize images and the objects therein. We start out with a layer-wise relevance propagation (LRP) step w...
متن کاملWhat Catches the Eye? Visualizing and Understanding Deep Saliency Models
Deep convolutional neural networks have demonstrated high performances for fixation prediction in recent years. How they achieve this, however, is less explored and they remain to be black box models. Here, we attempt to shed light on the internal structure of deep saliency models and study what features they extract for fixation prediction. Specifically, we use a simple yet powerful architectu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.00372 شماره
صفحات -
تاریخ انتشار 2017